Friday, August 7, 2009

Linux Boot Process - Incomplete

POST:(Step1)
When an x86 computer is booted, the processor looks at the end of the system memory for the BIOS (Basic Input/Output System) and runs it. The BIOS program is written into permanent read-only memory and is always available for use. The BIOS provides the lowest level interface to peripheral devices and controls the first step of the boot process.

BIOS:(Step2)
The BIOS tests the system, looks for and checks peripherals, and then looks for a drive to use to boot the system. Usually it checks the floppy drive (or CD-ROM drive on many newer systems) for bootable media, if present, and then it looks to the hard drive. The order of the drives used for booting is usually controlled by a particular BIOS setting on the system. Once Linux is installed on the hard drive of a system, the BIOS looks for a Master Boot Record (MBR) starting at the first sector on the first hard drive, loads its contents into memory, then passes control to it.

MBR:(Step3)
This first sector is called the Master Boot Record (also known as the partition table, or master boot block). At the start of this sector is a small program. This program uses the partition information (or partition table) stored at the end of the sector to determine which partition is bootable, and then attempts to boot from it.
This MBR contains instructions on how to load the GRUB (or LILO) boot-loader, using a pre-selected operating system. The MBR then loads the boot-loader, which takes over the process (if the boot-loader is installed in the MBR). In the default Red Hat Linux configuration, GRUB uses the settings in the MBR to display boot options in a menu. Once GRUB has received the correct instructions for the operating system to start, either from its command line or configuration file, it finds the necessary boot file and hands off control of the machine to that operating system.

GRUB:(Step4)
GRUB is independent of any particular operating system and may be thought of as a tiny, function-specific OS. The purpose of the GRUB kernel is to recognize filesystems and load boot images, and it provides both menu-driven and command-line interfaces to perform these functions. The command-line interface in particular is quite flexible and powerful, with command history and completion features familiar to users of the bash shell.

No comments:

Post a Comment

tag ur valuable ideas below